A Python VPI Module

tom.sheffler@sbcglobal.net

1 Introduction

APVM (A Python VPI Module) is a framework for writing Verilog PLI applications in Python. PLI
applications are foreign C routines that are linked into a Verilog simulator to add new functions ("system
functions") to a Verilog program. Simple PLI applications can be as trivial as one that adds a single C
math function ("cos" for example) to Verilog. More complex PLI applications add entire verification
languages or waveform analysys to Verilog. APVM links the Python interpreter as a PLI application and
exposes the VPI interface to the Python PLI Application writer.

The C-based VPI interface is very general, but complicated enough that it can be a challenge to implement
even the simplist PLI Application. APVM does much to simplify the process by introducing an object-
oriented framework over the basic PLI interface. In APVM, each Verilog instance of a call to the $apvm
system function is mapped to an instance of the "avpm.systf" class in Python. The base class defines
empty methods corresponding to simulation events that result in function callbacks. Most applications are
written by simply overriding the base class definitions in an extension class. Most commonly, the “calltf”
method is overridden. This method is called whenever the $apvm instance is called by the Verilog code.

Here is an example of a very simple APVM application.

helloworld.v

module top;
initial

$apvm("example", "helloworld", "hw");
endmodule

helloworld.py

o
£y

from apvm import

class hw(systf):
def calltf():
print "Hello World!\n"

The Python module "helloworld" defines a class "hw" whose base class is APVM's systf. The calltf
method is over-ridden to print the now famous string. In Verilog, we call $apvm with a unique identifying
name ("example" here), the name of the module ("helloworld") and the name of the class of which to
create an instance ("hw"). APVM initializes the instance of the Python hw class and does all of the work
of arranging for its calltf method to be called whenever Verilog execution reaches the $apvm call.

APVM does more than just map VPI callbacks to method calls. It exposes the entire VPI
programming interface to Python. VPI object pointers and pointers to VPI structs are mapped to opaque

data types in Python. VPI functions for traversing the Verilog hierarchy or accessing and setting values
are available, as are functions for creating simulation callback events. All VPI #define values are mapped
to constants in the apvm module. As an application framework, APVM also provides a 4-valued bit-
vector data type, a predefined mechanism for error and warning handling, and a structured method to
configure $apvm instances from configuration files and Verilog +plusargs. Thus, it is more than a simple
Python wrapper for VPL.

Because of the simplicity that APVM brings to writing a PLI application, it opens up interesting
possibilities for projects that might be considered difficult if starting from scratch in C. Here are a few
ideas.

+ Rapid prototyping of a simplified reference model may be accomplished in Python early in the design
of a Verification testbench so that testbench development can proceed before RTL is available.

+ Highly mathematical algorithms are more easily explored in languages other than Verilog. Before
committing to RTL, using Python's infinite length integers or add-on numerical libraries may prove to
be a more agile environment for exploring algorithmic tradeoffs.

+ Verilog is not necessarily a good language for implementing job reporting, manipulating files and
formatting text. These things are easy in Python. One can even imagine a sophisticated reporting
system that logs all simulation data to a relational database on another machine using a database
connection. Python's database connection facility makes this easy.

+ Custom GUI applications for displaying simulation progress become attractive when you can code
them in a few hours. Python's Tkinter interface to Tk/Tcl is appropriate for this.

» Sometimes it is desirable to collect information about the system a job is running on in a large
distributed simulation farm and adding it to the log file. Such a task is trivial in Python but not easy in
Verilog.

1.1 Why Python?

Python is an object-oriented interpreted language with a rich set of built in datatypes. It also comes with a
large library of useful modules for doing things like compressing files, producing HTML, serving data
over pipes or opening up database connections. It can integrate with Tk/TCL for graphical applications.
Contributed libraries are available from an enormous number of sources. At this stage of its development,
Python is a stable computing platform with a huge community of users. It has been in development for
over 10 years.

While the Python programming model is not necessarily compatible with any of the features of Verilog, as
a replacement for C for orchestrating VPI calls it presents a very friendly environment. Python offers a
great prototyping environment, and modern programming constructs like exceptions help users write clear
code. Being byte-compiled it offers good performance for many applications.

1.2 Related Projects

There have been only a few projects attempting to integrate Python and Verilog. One is called ScriptSim
by Dave Nelson [http://nelsim.com]. This approach runs Python as a separate process and communicates
with Verilog via a pipe. The communication protocol allows object values to be transferred back and
forth, and allows Python to synchronize with the simulator and schedule callbacks. ScriptSim has a nice
Tk/TCL interface as well.

Another effort is the ScriptEDA project at Berkeley by Pinhong Chen [http:/www-

cad.eecs.berkeley.edu/~pinhong/scriptEDA]. This effort explored using SWIG (a powerful package for
mapping and linking C libraries into interpreters) [http://swig.org] to map the VPI interface into Python.

The project did not add much structure or value beyond this translation.

Another related project is "Pivot", a commercial product that integrates Perl with Verilog through the PLI
1.0 interface [http://www.greenl.com/]. Pivot has a software layer that seems similar to APVM but also
provides many higher-level constructs on top of that layer to allow the design of complex testbenches in
Perl.

EDA industry efforts to link programming languages into Verilog for test generation and modeling include
Vera, Specman and System C. All of these efforts are motivated by the fact that descrbing anything other
than hardware is difficult in Verilog, whereas most testbenches are large software efforts. These
languages all add features for describing "tasks" and synchronization primitives in a meaningful way, and
hide the underlying PLI interface. In constrast, APVM opens up the VPI interface to the Python
programmer. Oroboro is the higher-level software layer that presents a simplified abstraction of tasks and
synchronization.

1.3 Structure of this Document

The next section presents a slightly more full-featured example. The example is a “memory” model
implemented using a Python hash table. The example shows a fairly useful application implemented in
just a page of code. A similar application coded in C would be much more complicated. Understanding
this example is a good place to start to get familiar with APVM.

Section 3 discusses the implementation of APVM. This may be of interest to those familiar with
implementing VPI applications, or those wondering how to embed Python into a simulator. This section
may be too low-level for those just wanting to know the basics of APVM and wanting to trying out some
examples.

Section 4 discusses the “Framework” facilities provided by APVM. While most of the examples just show
how simple applications are constructed, in a full-featured PLI application, there is a need for uniform
ways to obtain configuration information and present error and warning messages. APVM provides the
basics.

Section 5 summarizes this article and presents some directions for future work. Finally, Section 6 presents
some miscellaneous notes about the APVM/Oroboro project.

2 Examples

The following example demonstrates a sparse memory implemented using a hash table. The application
would be called from Verilog with three Verilog register arguments indicating a command (write or read),
an address and the data. When called, the application attempts to turn the address value into a long
integer. The long integer is used as the key to the memory hash table, "mydata.” If the conversion to a
long fails because there are x's or z's in the address, the call returns 0 and fails.

The rest of the application is straightforward. If a write command is requested, the data value is retrieved
as a four-valued binary string and stored in the hash table. If a read is requested, the memory location is
looked up and applied to the data register using "put_value."

verilog code

reg mem;

on (posedge clk)
$apvm(mem, "memex", "memex", cmd, addr, data);

memex.py

class memex(systf):

def soscb(self):

self.cmd = self.vobjs[0]
self.addr = self.vobjs[1]
self.data = self.vobjs[2]

self.mydata = { } # empty hash table

self.fmt = pack_s_vpi_value(vpiBinStringval, "01x")

def calltf(self)

addr_t = get_value_like(self.addr, self.fmt)
addr_s = addr_t[1]
cmd_t = get_value_like(self.cmd, self.fmt)

cmd_s = cmd_t[1]

parse as two-valued logic, return error is Xs or Zs

try:

addr_1 = long(addr_s, 2)
except:

return 0O
if cmd_s == "1": # write

data_s = get_value_like(self.data, self.fmt)
self.mydata[addr_1] = data_s

elif cmd_s == "0": # read
try:
data_s = self.mydata[addr_1]
except:
return 0

del = pack_s_vpi_time(vpiSimTime, 0, 0, 0.0)
put_value(self.data, data_s, del, vpiTransportDelay)
return 1

else:
print "Unknown command\n"
return O

2.1 Other Examples

APVM is distributed with a number of example applications that illustrate the basic capabilities of the
module and how to interact with the VPI interface through Python. These are described very briefly
below. These examples are provided with the Python code, a small Verilog top-level and a shell script
that shows how to run the example with Icarus Verilog, Cver and NC-Verilog. Icarus and Cver are

available for free.

apvm_mem - a sparse memory package, slightly different than the one shown above.
apvm_delay - a delay element showing how to use callbacks chedule events.

apvm_sr - a "stimulus/response” package. A stimulus/response file lists event times, stimuli to apply to
nets and responses to check. This illustrates complex interactions with the Verilog scheduler. An
extension of this example could form the basis for a test generation package.

plusargs - how to parse and use plusargs.
shownets - show all of the nets in a given module.

checker - a task that looks for a sequence of integers over time. This example uses a Python "generator"
function as a lightweight process so that the checker is properly reentrant.

tkserver - demonstration of using Python's Tkinter interface to Tk/Tcl to build a simple X window-based
message facility for Verilog programs. This might be useful in a compute server farm to allow simulation
runs to send messages to a user's workstation.

rusage - print the execution hostname and resource statistics (CPU, IO, Swap) in the log file.

These examples show that APVM can implement fairly complex behavior with not a lot of code. In fact,
this is one of the main strenghts of Python. With its full-featured built-in datatypes, many applications can
be written without needing to defind new classes. If you are new to VPI or APVM, studying these
examples should give a good understanding of the basics of both.

3 Considerations in Implementing $apvm

The VPI interface is very powerful, but presents a number of challenges to implenting PLI applications.
This section discusses a few of those challenges and describes how APVM handles them. For those not

familiar with VPI, a good reference is [http://www.verilog.com/1364-2005_D3.pdf].

3.1 Memory Allocation and Instance Workareas

Most Verilog implementations separate compile, elaborate and run phases of Verilog execution. When
writing a PLI application, the user is able to specify a compile-time function to be called for the
application and a run-time (calltf) function to be called for the application. The user is severely limited as
to the operations that can be performed at compile time because compilation may be implemented as a
separate Unix process by some Verilog implementations. Thus, even implementing memory on behalf of
the runtime application is not permitted.

One operation that is allowed is to request that the simulator execute a callback on behalf of the
application. APVM registers a start-of-simulation callback that is guaranteed to run just before time 0 in
the run phase of execution. It is in this callback that memory is allocated for each instance of an $apvm
call. The requirement for a callback at start-of-simulation seems so basic that it is surprising that VPI does
not provide this directly.

Each $apvm instance requires a separate workarea to maintain its instance-specific information. The most
recent VPI specification describes two functions for this purpose: vpi_put_userdata and
vpi_get_userdata. Most versions of Verilog now have this support, but some do not. For those versions
of Verilog that do not yet have these functions, APVM implements a simple closed growable hashtable to
map system function handles to the workareas. The option is selectable at compile time by setting a few
#define variables.

3.2 Mapping VPI structures to Python Data Structures

The VPI interface defines a few C structures that must be manipulated by the user to perform operations in
VPIL. These are limited to just a few types and describe only simple structures. The s_vpi_time struct is a
good example. It is shown here.

struct s_vpi_time {
unsigned int type, hi, lo;
double simtime;

};

When using the VPI interface in C, a programmer typically loads these structures with values to pass to
VPI functions. To obtain values, the programmer passes a pointer to one of these structures, and VPI fills
it with values that can then be examined by the programmer. This use pattern does not map well to
Python.

Instead, we implemented opaque pointers to these structures and provide a "pack" function in Python that
constructs a new s_vpi_time struct from a Python tuple and an "unpack" function that takes an opaque
pointer and returns a tuple. From Python, an s_vpi_time object is an immutable object. This notion fits
much better with Python's garbage collection.

The use pattern is pretty simple. When a Python VPI function requires an s_vpi_time type, the user
creates one on the fly with a function that packs base types into a newly allocated struct.

t = pack_s_vpi_time(vpiSimTime, 10, 0, 0.0)
put_value(vpi_h, value, t, vpiTransportDelay)

Such structs are also used as templates for result containes. This other use of these structs is mapped into
Python in a slightly curious way. The s_vpi_time struct is a good example. The first field is a type tag that
may take on either the value vpiSimTime or vpiScaledRealTime. If it is vpiSimTime then the low and high
fields are used to describe the 64-bit simulation time. If the type field is vpiScaledRealTime, then the
"real" field describes time as a double.

To get the current time, in C the programmer sets the type field of an s_vpi_time struct and passes it to
get_time.

S_vpi_time t;
t.type = vpiSimTime

t.low = 0;
t.high = 0;
t.real = 0.0;

vpi_get_time(vpiHandle, &t)
/* use the return value somehow */
newtime = t.low + ...

Rather than adopt this directly and allow the VPI interface to modify allocated structures, in Python we
chose to do something a little different. The user first creates a "template" s_vpi_time object and then
passes it to a function that uses the template but returns a new struct as the value.

tl pack_s_vpi_time(vpiSimTime, 0, 0, 0.0)
t2 = get_time_like(vpiHandle, t1)
(typ, lo, hi, real) = unpack_s_vpi_time(t2)

The value returned is a *new* s_vpi_time object that can be "unpacked" to query the return value. This
use pattern is sufficient to perform all required tasks, and is simple enough to learn quickly. Its drawback
is a greater impact on the memory allocation and collection system.

Some VPI structs have union fields with variant field names for each of a number of fixed number of
different types: integer, double, string. When packing such a struct, APVM infers the type field from the
type of the Python argument. When unpacking the struct, APVM uses the type tag to infer the variant
field to read. This mechanism is very simple but has been sufficient in practice.

3.3 Callbacks in Python

The implementation of callbacks in APVM deserves a discussion. APVM provides a system-function
instance-specific callback, while VPI associates a callback with a particular C function, but not a Verilog
system-function instance.

VPI does however, allow a user to attach an identifying "char*" to each callback, and it is this mechanism
that we chose to use for our callback dispatch mechanism. The VPI standard is not exactly clear whether
the payload can be an arbitrary pointer or that it must be a string pointer. We chose to be very
conservative and assume only that it is a string pointer and create unique strings to identify callback
instances.

The APVM systf class defines two methods for arbitrary callbacks: method "callmeback” schedules a
callback for the instance, and arranges for the "callback” method to be called.

class systf:
def callmeback(self, reason, object, time, value, userdata):

def callback(self, cbdata, userdata):

When a user calls the callmeback method, APVM constructs a unique string (like a gensym in Lisp) for
the call, s. The string s is put in a dispatch table (represented as a Python dictionary) mapped to the calling
instance object with copies of the callback arguments. APVM then calls the VPI vpi_register_callback
function with a pointer to the static APVM callback function, and the userdata field set to the string, s.
When the simulator calls the static APVM C callback function with string s, APVM looks up the calling
instance and data from the dispatch table and calls the "callback" method.

This implementation provides an object-oriented callback mechanism on top of the VPI calls. It seems
simple when explained here, but was not simple to arrive at. One source of confusion is that the VPI
interface allows each callback request to specify an "obj" (object) field that the callback is associated with.
In most simulators this field is relevant only if the callback is associated with a structure like a wire or
register and not an arbitrary system function instance. The dispatch table implementation with uniques
strings is an efficient and simple approach to the problem.

One drawback of this approach is that the size of the dispatch table could grow as the simulation proceeds,
since it stores information for every callback performed by APVM. This occurs because APVM cannot
automatically determine which callbacks occur only once and which may persist throughout the
simulation. To address this problem, we require users to specify when a callback is "persistent”, meaning
that the callback may be executed many times. For calls that are not identified as "persistent”, we remove
their entry from the dispatch table after they are executed. This simple policy helps keep memory from
growing unacceptably.

3.4 New Callback Facility in Version 0.11

APVM Version 0.11 provides the existing callmeback/callback methods for each systf instance, but also
provides a more general mechanism that is not tied to a particular systf instance. This streamlined
interface is modeled after more traditional callback facilities and is much more flexible in that an instance
of any callable Python type may be be the target of a callback.

The APVM module function schedule_cb schedules a new VPI callback and returns a handle. An
example of the use of schedule_cb follows.

def mycbfn(reason, object, time, value, userdata):
print “I am being called back for reason: %d\n” % reason

notime = pack_s_vpi_time(vpiSimTime, 0, 0, 0.0)
noval = pack_s_vpi_value(vpiIntVal, 0)

h = schedule_cb(mycbfn, cbNextSimTime, vpih, notime, novalue, “”)

In the example above, we defined a callback function named “mycbfn.” All Python VPI callback
functions must have the formal parameter list shown above. These arguments mirror those required by
native C callback functions. When scheduling the callback with the APVM function schedule_cb, the
user gives the VPI reason, the object (a VPI handle, if any, None if the C pointer should be NULL), a
simulation time object, a VPI value object and any optional user data. When Verilog schedules the
callback, it calls the user function with the arguments shown.

If the callback has not yet transpired, it can be cancelled as shown below. This function both removes the
entry from the dispatch table, and calls the VPI remove_cb and free_object functions on the
corresponding C-level callback object.

cancel_cb(h)

Note that any callable Python object may be used as the callback function. Bound method calls are
especially useful in this role. A short example follows. The interesting part is highlighted in bold.

class myclass:
def cb_example(self, reason, object, time, value, userdata):
print "I am a bound method callback for: ", name

inst = myclass()

h = schedule_cb(inst.cb_example, cbAfterDelay, vpih, t2, value, "")

This callback mechanism subsumes and extends the previous mechanism based on the callmeback and
callack methods. Any method of the same instance can be the target of a callback. The very short
example below shows how a method of one class can schedule another method as the target of a callback.
Following this design pattern ensures that any number of instances of a class can be created and the
callbacks of each is restricted to the members of the same instance.

class myclass:
def methl(self):

self.h = schedule_cb(self.meth2,)

def meth2(self, reason, object, time, value, userdata):
pass

4 Framework Facilities

APVM offers facilities beyond that of simple interaction with the VPI interface. This section discusses
some of those features.

4.1 Configuration

The first argument to the $apvm call is the "name" of the instance. Users of APVM should ensure that
each name in the system is unique. This name may be a string or a Verilog object (usually a register). If it
is a string, then the string is the name of the call. If the argument is a Verilog object, then its pathname
becomes the name of the call.

Using a Verilog object makes it possible to write Verilog modules containing $apvm calls in a way that
each instance will have a unique name. Consider the following example.

module apvm_module(i, o0);

in [0:0] 1i;

out [0:0] o;

reg [0:0] o_drv;

reg id;

assign o = o_drv;

initial

$apvm(id, "foo", "bar", i, o_drv);

endmodule

The path name of the id register will become the name of each $apvm instance.

The instance name is used for such mundane things as printing a welcome banner and occasional
debugging messages. However, the unique name becomes important for APVM applications that require
(or provide) configuration.

APVM uses Python's native ConfigParser class to look for configuration files in standard places (current
directory, home directory, system install directory). Python configuration files have sections with named
parameters and resemble ".ini" files that are found on some systems. APVM adopts the convention that an
instance looks for its configuration parameters in the section with its instance name. Consider the example
below for an instance that was given the unique name "top.config_example.id." The application can look
up its configuration parameter "myval" using a standard method.

file.py
from apvm import *
def config_example(systf):

def soscb():
self.myval = self.get_config("myval")

apvm.cfg

[top.config_example.id]
myval: 45

APVM also allows instance parameters to be specified on the Verilog command line with plus-args.
APVM adopts the convention that a plusarg of the form "name:param" is mapped to the instance with the
given name. If using the example above, a user could override the configuration file default with a
different value.

% verilog +top.config_example.id:myval=46 ...

This simple combination of unique instance names and structured configuration mechanisms provides a
useful feature for writing reusable applications.

4.2 Bit Vectors

As a convenience, APVM provides a bit vector class and functions for getting the value of a Verilog
variable as a bit vector and for setting the value of a Verilog variable. The bit vector class overrides
standard Python operators (+, *, <<, >>, subscripting, etc) to make operations on bit vectors clear and
convenient. Bit vectors can be initialized from integers, or four-valued strings in Verilog syntax.

x = BV("4'b01xz")

The example below shows an APVM application that computes a function on two Verilog input variables
and then schedules the result value to be applied two time units in the future. The list "self.vobjs" is
provided by APVM for all instances: it is the list of VPI handles to the objects in the $apvm call following
the class name. Functions bv_from_vpi and bv_to_vpi get bit vectors from and send bit vectors to objects
referenced by VPI handles.

bitvect.v

$apvm("bvex", "bitvect", "bitvect_example", inO, inl, out)

bitvect.py

from apvm import *
class bitvect_example(systf):

def calltf(self:
val0 = bv_from_vpi(self.vobjs[0])
vall = bv_from_vpi(self.vobjs[1])
delay = 2.0

retval = (val0 << 1) & (vall >> 1)
bv_to_vpi(self.vobjs[2], retval, delay)

The bit vector class represents its values as simple four-valued strings. Thus, computations on bit vectors
are straightforward but not necessarily as efficient as they could be. The convenience of using the class
may outweigh the performance consideration. In the future, we may consider trying to optimize this class.

4.3 Save/Restore (Persistence)

Writing a PLI application is tough enough. Writing one that plays well with the Verilog Save/Restore
mechanism is even harder. APVM provides a nice solution to the problem largely because it is based on
Python. The "shelve" module is a standard part of a Python distribution defining a dictionary-like object
that is mapped to a file. Users can save any type of Python structure (most nested and even recursive
structures are supported) in the dictionary and when the shelve object is written to a file, the Python
objects are "pickled" (serialized) so that they can be saved.

The standard APVM systf class defines empty Save/Restart simulation event methods, and two methods to
help save and restore data from the shelve object. APVM calls the method "save_app_data" when Verilog
does a system save, and calls method "restore_app_data" upon a restart. These methods default to empty
function bodies. Implementing persistence is as simple as what is shown in the example below.

class myclass(systf):

def save_app_data(self):
self.save_data(self.mydata)

def restore_app_data(self):
self.mydata = self.restore_data()

The methods "save_data" and "restore_data" simply put data in the shelve object and get it out using the
systf instance name as the dictionary key. Other parts of APVM handle opening and closing the shelve
object and reloading Python on Restart.

While many aspects of state can be saved this way, other things require more complicated restart
operations. One example might be a PLI application that has registered callback events on certain signal
changes. These callbacks would have to be re-registered upon restart.

The name of the shelve file defaults to "apvm.gdbm", but can be set with configuration file or plusargs
using the key "apvm:shelve_file".

5 Conclusions

This first release of APVM presents a framework for writing PLI applications in Python. The object
oriented features of Python help to simplify the call back model of VPI and "systf" instances unify issues
such as instance data handling, configuration and checkpoint/restart. APVM automates much of the
tedium of writing a new PLI application and allows the programmer to focus on the interesting parts.

Many aspects of the VPI interface are unchanged in APVM. Traversing the Verilog database requires the
same use of tags and iterators one would use in C. Creating time and value structures also requires
knowing the corresponding C struct layout. Higher levels of abstraction layered on top of APVM might
help simplify some of these issues one day, but all of the functionality required for full-featured
applications is present in APVM now.

The examples provided here and in the release illustrate a variety of tasks that can be accomplished
relatively easily using APVM. These include generating tests and interacting with the scheduler,

traversing the database, implementing a checker and instrumenting Verilog with a Tk/Tcl interface.

6 Addenda

These are some miscellaneous notes regarding this project.

6.1 Development Environment

APVM has been developed using Python, Icarus Verilog, GPL Cver, and Tkinter on Redhat 9. APVM has
also been demonstrated using NC-Verilog, VCS and Modelsim. The examples included with the
distribution are written so as to work properly in the subset of the VPI interface provide by Icarus
[http://icarus.com/eda/verilog]. Another promising free Verilog simulator is GPLCVER
[http://www.pragmatic-c.com/gpl-cver]. As of this writing, APVM works with GPLCVER1.10i.
Universal compatibility with all Verilog simulators is the eventual goal.

6.2 Documentation Tool

I have adopted OpenOffice.org as my main documentation tool. The program seems to have anything one
might want, but it is complicated. My mastery of this program is minimal, so I have difficulty with even
the simplest things - like properly numbering sections. Getting to know this tool has been a great learning
experience.

6.3 You Can Help

If you find this project or tool interesting, you might be able to help make it better. One area that needs
improvement is the configure/build process, which is largely manual right now. The correct use of the
Python "distutils" package should help. Some installations also require setting Python environment
variables, and this can be very difficult. Developing a better way to get all of this right would be an
enormous step forward.

Table of Contents

BN 7 1100 1 VA 5 091 (0T 1 TP 1
tOM.Sheffler@ShCIODALNEL..........coveeeeeeecee ettt sasssssesesasananens 1

I 110074 L1 0 (0] 1
I 10 2 1 110 2

1.2 RElAteA PIOJOCES....vcueeeiereueceieeraeieeresseseestess e seesssss e e sesse e e e sssse et ssssssenssansesenssensasenensssnsesenses sesssssssns 2
1.3 Structure of thiS DOCUITIENL.ccceeererereierceereessiesseesseesesessesessesessessssesssssssssesssssses sesssessssssssssssenssss 3

B o) 111 0] OO U 3
2.1 OTher EXAIMPIES......ccceieueeceeeerreceerereesesestetsaeseseeesassesessassesssesessesenssssssssens sesesessssssssssssssssssssssssssssnsssnns 4

3 Considerations in Implementing SAPVINL......cvovveeururerrerererererereresesesereresesereseresesesesesesesesesesssesesesesssesesesesenes)
3.1 Memory Allocation and INStance WOIKAIas..........cccceerurreerererresesereessseseeessssssesessssssessessssssesens sesssssens 5
3.2 Mapping VPI structures to0 Python Data SITUCIUIES........cceceerereererererssseseresssssenessssssssssessssssssesens sesseses 6
3.3 CallDACKS 1N PYTNON......ccueieieeeeccieeee ettt ees e et e s e s e ee s se et esenas seessansnsssnns 7
3.4 New Callback Facility in Version 0.11......cccccocerrererererneeseresecsesessssssesesessessesessssssssssssssssssesseas ses 8

4 FTAMEWOTK FACIITIES....vevrrreeeerererurenerersnseesessssssee st ssseesesssas s e ssssssssssesessssssesssassssensssnsnses sesssssssesssssssssssssnses 9
0] 1170 v 10) o TSP 9
4.2 BIt VRCTOTS..cuetrueetruetrsestsesessessssesssessssssessssesssesssss s ssssssssssssssssssssessssesssssssssssassnssssnses sessessssssssssnanaen 10
4.3 SAVE/RESIOTE (POISISTEIICE)....ueeeererecrrcerereeiressesessesssssssssessessesssssessessesassesessessesssssssesssnssnssssassaness sees 11

0] 110 11T 1) 4 11
A [1 1 T < U 12
6.1 Development ENVIFONIMENT......c.vrceceererireeereraraeseseresseseseressssssesssssssssssesssssssessssssses sesssessssssssasassessees 12
6.2 DOCUMENTALION TOOL......ccveeeieeeieeeteceeteseeee st eee e sae e rae s ae st s e e e e e e e s s et ssessssesaesesaesesaensssens saessssesssenees 12

LIS T (0 I 11 5 (<) P 12

